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Stability of a mass accreting shell expanding in a plasma
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A linearized analysis is presented of the stability of a shell which accretes mass as it expands in a plasma
under the push of the electromagnetic radiation trapped inside it. The interaction with the radiation is described
in terms of a ponderomotive force and the shell dynamics is treated within the snowplow approximation. The
mass accretion and the radiation expansion are shown to affect the stability of planar, cylindrical, and spherical
shells differently.
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I. INTRODUCTION Recently it has been recognized that the physics of the
interaction of ultraintense laser pulses with plasmas provides
The expansion of plasma bubbles and cavities in an amthe opportunity for simulating such cosmic events as a su-
bient plasma has been widely studied both in the laboratorp€rnova explosion in the laboratof¥5]. In addition, in the
and in the astrophysical context with reference to diﬁereng'terapt'on_qf a laser pulse with a plasma, a phenomenon has
physical phenomena, ranging from the expansion of supe peen identified16] that directly involves the expansion of a

nova remnants to the evolution of relativistic electromagneticcavIty filled with electromagnetic energy, its interaction, and

solitons. The free expansion of a spherical bubble of c:Olgoalescence with other cavities in the plasma and the even-

: : al sphericization of the resulting structure. This phenom-
plasma and its retardation due to the effect of the external,,, i related to the long time evolution of the relativistic

material can be described with the exact self-similar SOIUtiO%ubcycIe electromagnetic solitofis7,1§ that are produced
obtained by Sedoj1] and Taylor{2]. However, this solution \yhen an ultrashort ultraintense laser pulse propagates in an

implies perfect spherical symmetry and cannot be used wheginderdense plasma. Interestingly, as in the cosmic case, these
the symmetry is broken. In this case the snowplow approxismall scale structures have been considered as a mechanism
mation provides a convenient tool for a qualitative and quanof particle acceleratiofl9].
titative description of the expansion as was shown more than Relativistic subcycle solitongl7] consists of slowly or
40 years ago. The snowplow model was developed in Refonpropagating electron density cavities inside which an
[3] in application to the theory of the plasma focus. In Ref.electromagnetic field is trapped and oscillates coherently
[4] it was shown how to solve the Sedov-Taylor problemwith a frequency below the local plasma frequency and a
within the snowplow approximation. The bubble expansionspatial structure corresponding to half a cycle. These nonlin-
was also considered within the framework of the snowplowear structures are commonly observed in one- and two-
approximation in Ref[5] in the context of the study of su- dimensional1D and 2D patrticle in cell(PIC) simulations of
pernovae explosions. In the snowplow mofddithe ambient the laser pulse interaction with a plasma. Recently, they have
matter is assumed to collide inelastically with an infinitely been identified in three-dimensioné3D) PIC simulations
thin shell of plasma expanding in a medium. The shell[18] and their long term effect on the plasma has been pro-
sweeps through space and piles up the matter it encountep®sed in Ref[20] in order to explain the experimental de-
on its surface, just as the blade of a snowplow collects théection with the technique of proton imaging of long lived
snow. electric field bubbles in a plasma after the interaction with an
More detailed models of the supernovae expansion weraltraintense laser pulse.
later developed, see, e.g., Refg] and references therein, As discussed in Ref16], in an electron-ion plasma sub-
and the problem of the stability of the spherical expansiorcycle solitons evolve on the ion dynamical time scale into
was addressed in the case of an inhomogeneous medium frostsolitons, i.e., into slowly expanding quasineutral cavities
Ref.[8] and numerically in Ref.9], while in Ref.[10] itwas filled by electromagnetic radiation. This evolution is caused
recognized that the mass accretion in the snowplow mechdy the ion acceleration due the time-averaged electrostatic
nism tends to suppress the development of the RayleigHield inside the soliton. In Ref.16] the theory of these ex-
Taylor instability. The acceleration of charged particles dugpanding quasineutral cavities was developed within the
to the expansion of these spherical plasma shells was studiéamework of the snowplow model. In this framework the
in Ref. [11]. We recall that the acceleration of charged par-plasma cavity forms a resonator for the trapped electromag-
ticles at the front of shock waves provides one of the moshetic field and expands under the push of its ponderomotive
important acceleration mechanisms which has been unddéorce exerted by the electromagnetic fields. As the cavity
discussion for many yearsee, for example, Ref§6] and  expands, the amplitude and the frequency of the electromag-
[12] and literature quoted therginn this context, the studies netic field E decrease. In the adiabatic limit the ratio
of the shock wave sphericization is of great importance forf E2dV/w between the energy and the frequency remains
the problem of cosmic ray acceleration by the curved shockonstant so thaE2~r ~“ with r the cavity radius. Under the
waves[13,14]. action of the electromagnetic pressure the walls of the cavity
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move, piling up plasma as a snowplow. The mass inside the The mass conservation equation can be written in La-
expanding plasma shell is equal to the ma#4  grangian variables as

=4mnom;r®/3 initially contained inside a sphere of the ra-

diusr and the momentum conservation equation gives d(o d% u)=p(r)dx, €)

_ 2,2 wherer (t) is the position of the shell element at timeéHere
dLM(dr/dy J/dt=4r(E")/8m, @ the surface density, the surface elemertX=d3 n, the
shell velocityu, and normal unit vecton are functions of
r(t). Analogously, the momentum conservation equation can
be written as

dir3(dr/dt))/dt=r 2. 2 d(ad3)=pou-dx, 4

which yields[16] for the shell radius =r(t) in dimension-
less units

Asymptotically fort—cc the postsoliton radius increases aswith p, the external densityassumed constant and uniform
r~te, for the sake of simplicitythat is being accreted amqr) the

In Ref. [20] simulations of the two postsolitons and of ponderomotive pressure that pushes the shell walls due to the
multisoliton merging were performed with the aim of inter- trapped electromagnetic radiation. We close this system of
preting the experimental detection, reported in the same paquations by adopting the following model for the pondero-
per, of electric field bubbles. In these simulations the strucmotive pressure term(r):
tures that result from the merging evolve towards a nearly

spherical shape, i.e., the initial nonspherical perturbation de- p(r)/po=(|rol/|r|)1*P. (5)
cays. This implies that the expansion of spherical postsoli-
tons is stable. HereD is the dimension of the expansion proce3s: 1 in a

In the present paper we examine the linear stability ofplanar geometryD =2 in a two-dimensionalcylindrica) ex-
postsolitons analytically within the framework of the snow- pansion, and =3 in the three-dimensionépherical case.
plow approximation in the limit where the shell walls are Integrating Eq.(4) we obtain
infinitely thin. We find that the bubbles are stable against a
modified form of the Rayleigh-Taylor instability up to rela- _
tively short wave numbers or where the shell model can no U(dz/dEO)_UOerof u- dx/dXo=m(t), ©
longer be expected to be valid. These short wavelength
modulations are not seen in the numerical simulations of thevheredX,=da X dg is the Lagrangian surface element,
expanding postsolitons in RgR20] and are likely to be sta- and B are the Lagrangian variables chosen such that at
bilized by the effects of the finite width of the shell not =ty we haves=0y anddX =d3,, andm(t) is the shell
included in the snowplow approximation. mass for unit initial surface area. For sufficiently large times

The aim of the present paper is to provide a general treathe contribution of the initial density to the shell mass can
ment of the linear stability of a thin shell that accretes in thebe neglected.
snowplow approximation. Therefore we examine different Introducing dimensionless units with the density normal-
shell geometries corresponding to the expansion of a planaized onpgr g, the velocity on po/po)*? lengths orrg, and
of a cylindrical, and of a spherical shell. We find that thetime onry(po/po) ~“? Egs.(3) and(4) take the form
faster decrease of the ponderomotive force and the higher

mass intake that characterize the spherical expansion lead to IM=(04r [ 1 X dpr]), (7)
increased stability. As a byproduct of the present analysis we

derive the time evolution of the deformation and of the mo- at(matr)z|r|*(1*D)[aar><aBr]. €]
tion of a postsoliton expanding in a weakly inhomogeneous

plasma. An interesting extension of the present work will Ill. SHELL EXPANSION IN A PLANE

consist of the inclusion of a “rocket” term in the equations
for the mass evolution and for the momentum conservation In this section we first determine the steady expansion
of the shell so as to analyze the effect on the shell stability ofate of a planar shell.e., of a shell that expands alorgnd
the bouncing back of the material that is accreted on the shethat att=0 is located at thex=0 line) and of a cylindrical
surface and the loss of mass left behind inside the expandirghell (i.e., of a shell that expands radially and thatat is
cavity. located atR= R, with R the distance from the origin in the
x-y plang in the two-dimensionak-y plane. Subsequently,
Il. GOVERNING EQUATIONS we investigate the linear stability of this expansion. In terms
of Eq. (5) the planar case, where the pressure decreases on
We adopt the set of equations that has been used for thg| =2, corresponds t® =1 and the cylindrical case, where
description of the Rayleigh-Taylor instability of a thin shell the pressure depends &1°3, to D=2.
(see Ref[21]), modified in order to account for the increase  Following Ref.[21] we find it convenient to introduce the
of the shell mass and the decrease of the push of the electreemplex variable
magnetic pressure as the shell expands and sweeps the back-
ground plasma. w=Xx+iy, 9
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so that

Xx=(W+w*)/2, y=—i(w—w*)/2
and (10
RZ=ww*,

with the asterisk denoting complex conjugate. Then Efs.
and (8) can be written as

dm= 5(3tW<9aW* — 9 WIW*), (12)
A(maw) = —ip(w,w*)d, w, (12
where
p(w,w*)= L and p(w,w*)=
’ (W+w*)? ’ (ww* )32

13

in the planar and in the cylindrical case, respectively.

A. Planar shell expansion

PHYSICAL REVIEW E 65 066405

C. Planar shell expansion stability

We linearize Egs(12) and(13) around the slab solution
W, given by Eq.(14). Note that for a planar slab, Eq4.2)
and (13), together with the equilibrium solutiom,, are
translationally invariant along (i.e., alongy) and are invari-
ant under the transformation

WeW*, ae —a (20

[in the case of Eq(13) we obtain its complex conjugate
equatior. We set

+
W(a,t)=W0+&IV=W0+f dk wexp(ika) (212)

and see that Eq$12) and(13) couple thek and —k harmon-

ics. Using the invariance properties of E¢k2) and(13) we

find (see Appendix Athat for a chosenk| (=k), i.e., dis-

regarding the relative phase between modes with different

|k|, we can takew, andw_ to be real. Then we write
m(a,t)=mgy(t)+ my(a,t), (22

where thelk| componentsm, of the mass variation can be
written in terms of its amplitude, (t) and of the variabler

The steady expansion of a planar shell is obtained bys

defining the Lagrangian variable as the Cartesian coordi-
nate along the shell at=0 and by setting

Wo(t,a):XO(t)+ia, i.e., yo(t)=y0(t=0)Ea (14)

Then from Eqs(12) and (13), or directly from Eqgs(7) and
(8), we obtain

Mo(t)=Xo(t) and dyXo(t)?=2/xo(1)?, (15)
which, fort>1, gives
Xo(H)=[(26)% In(t)]". (16)

The kinetic energy of the planar shell decreases with time as

(O~ I

B. Cylindrical shell expansion

The steady expansion of a cylindrical shell is obtained by

defining the Lagrangian variable as the azimuthal angle
along the shell at=0 and by setting

Wo(t,a) =Ro(t)exp(ia), 17

Xo(t)=Ro(t)coga), Yo(t)=Ro(t)sin(a).  (18)

Then from Eqs(12) and(13), or directly from Eqgs(7) and
(8), we obtain

mo(t)=R23(1)/2 and Ry(t)=(5t)?". (19

omy(a,t) = p(t)[explika)+exp —ika)]
=2u(t)cogka),

while the perturbed pressure termw/ w*)? gives

(23

Al(w+w*)2~[1-2 cogka)(W,+W_,)/Xol/x5. (24)

Thus, we obtain the following coupled ordinary differential
equations:

Fppe(t) = KXo(Wi—= W ) [2+ (W + W) /2

= (X0) ¥l (X0) Wid/2+ (%) di[ (Xo) W ]/2

(29
and
kw, wtw_
F(Mo(t) dwy) + 0 i diXo) = BV A B (26)
0 0
—kw_,  witw_
F(Mo(t) W _ ) + 0 pydiXo) = 2 3 (27)
0 0

For very larget such thakx,>1, the last terms on the right-
hand side(rhs) of Egs. (26) and (27), which represent the
effect of the perturbed pressure, can be neglected diare-
garding unimportant logarithmic termse can take

()= fymo(t)exp yt¥4),

Wi (1) =WXo(t) exp( yt1/4), (28)

The kinetic energy of the cylindrical shell decreases with

time ast =25,

W (1) =W_ Xo(t) exp( yt1/4),
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wherey= y(|k|) andmg(t)~x,(t)~8Y42 Stability corre- (1+s)Ry 3(R¢+R_y)
sponds to nonpositive values of However, it is easy to see I Mo(D)diRs]+ d(psdiRo) = —g—— —— =3,
that the second term on the left-hand sittes) of Egs. (26) 0 0 (36
and (27) is smaller than the first for>|y| * so that the
mass term perturbation can be neglected. Then we obtain (1-s)R_s 3(Rs+R_y)
[ Mo(t) R_s]+ dy(msdtRo) = R oR3
2=+k (29 0 0
7 1 (37)

as in the Ott problenm22] discussed in Ref21]. This result The solutions of Eqs(35)—(37) are of the form
shows that the asymptotic stability properties of a planar '

shell expansion are not improved in an essential way by th o~ yyt2l5 _D1ty _bD 17
mass accretion and by the decrease of the pressure term t as((t) AT R(O=RAT R(O=R-L (38
simply result in the slowdowfsee Eq(28)] of the growth of  \here the exponeny=y(s) is given by the roots of the
the Rayleigh-Taylor instability without, however, affecting fourth-order polynomial
the instability conditions.

The fifth solution of the system of Eq&5)—(27) corre- 125%+ 5(6+ 55y+ 150y*+ 125y°%) =0. (39

sponds to setting
Stable solutions correspond to Re2/5. We find stability

W_(t)=—w_,(t)=const, i.e, 5x=0 (30) for s<6. The fifth solution of Eqs(35)—(37) corresponds to
v=2/5 and has toR;=—R_g for all s which implies
and is independent di. This solution has no physical rel- d(ww*)=0, i.e., the distance from the origin is not changed.
evance and corresponds to a relabeling of the varigble As in the planar solution this fifth solution corresponds to a
=y(«) in the equilibrium solution in Eq(14) from y=« to relabeling of the azimuthal angle in the equilibrium solution
y=f(a) and the corresponding change imy(t) to  as a function of the Lagrangian variahie For large values
mo(t) [df(a)/da]. of s Eq. (39) reduces toy?= *i(2v3/25)s which is a modi-
fication of Ott's resulf22]. These results show that the effect
of the mass accretion and of the decrease of the pressure
stabilizes the long wavelength Rayleigh-Taylor modes of a
We linearize Eqs(12) and (13) around the cylindrical cylindrical foil. The instabilities at short wavelengthiarge

solutionw, given by Eq.(17) and write s) can be expected to be stabilized by effects related to the
finite width of the expanding shell which are not accounted
for in the snowplow model.

D. Cylindrical shell expansion stability

w(a,t)=wy+ éw

=Rp(t)explia) +2R(t)exdi(s+1)a], (31)
E. Motion in a weakly inhomogeneous background
wheredw has been expanded in a Fourier series and the sum a pertyrhation approach analogous to the one used for the
extends from—o to +<. As in the planar case the Fourier apoye stability analysis makes it possible to calculate the

modess and —s are coupled and we can takg(t) 10 be  mqtion and the deformation of a cylindrical shell in a weakly
real. We label the pairs of coupled modes by the inslaxd inhomogeneous background.

write We consider a weakly inhomogeneous 2D configuration
with an external plasma density of the form

m(a,t)=mgy(t) + dmg(a,t), (32
po(X)=po[ 1+ e(v*w+ow*)], (40)
where
with e<1 andv a complex number such thav*=1. To
omg(a,t)=ug(t)[explisa) +exp —isa)] leading order ine we can use Eqg36) and(37) with s=1,
together with the mass equati¢d5) where the effect of the
=2ug(t)codsa), (33 plasma inhomogeneity takes the form of a forcing term.

Choosing the Lagrangian anglesuch that =1 (i.e., taking
the plasma density to vary along instead of Eq(35) we
obtain

while the perturbed pressure term* ) ~%? gives

(ww*) 32=R;3—3[(Rs+R_g)/R3]cogsa). (34)
&tﬂlzRO[Z&tRl—’_ &tR_l]/2+ EROatmo(t). (41)
Then, analogously to the planar case, we obtain the follow-

ing coupled ordinary differential equations: For larget the above system of equations reduces to
1[(RETIRy)  a(RGIR_) drpu1~ €RoMg(t) (42)
) RS ! Ro® (39 and
and A mo(t)dRy ]~ — di(19;Ro), (43)
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[ mg(t)dR_]~ — d:(10;Ro), (44) i.€., dylo, dglo, difolirg form an orthogonal basis in space
and define tree unit vectoes(«, 8), €s(«,B), &(«a,B) such
which give that
R1~R,1O<t4/5, R1<O, R,1<0 (45) &ar():haea, &ﬁr0=hﬁeﬁ, &tl’0=htq, eaXe[,:e[(éo)

and show that the shell negative shift alongnd its defor- ;
mation grow together and faster than the equilibrium expan\-Nhereea’ €. & are independent df and

sion. ht:iO’ ha:ro(l_QZ)—UZ, hB:rO(l_aZ)UZ (51)
IV. SHELL EXPANSION IN SPACE are the metric elements defined by
The expansion of a three-dimensional shell and its stabil- dx?+dy?+dZ=h{dt?+h2da?+h3dp% (52
ity properties are intrinsically different from those of a shell _ .
expanding in a plane. As explicitly discussed in R&8], the Inserting Eqs(47) and (48) into Egs.(7) and(8) we ob-

equations of the shell expansion in space are nonlinear in tH&in
Lagrangian variables and 3, as shown by Eq<7) and(8),
while in the case of the expansion in a plane the only non-
linearities arise fromm(t) andp(t).

We consider a spherical configuration with

amo(t) =hih h=Fors, (53
which gives for the shell mass for unit solid angle

_ 3
a=cosé, B=op, (46) Mo(t) =ro(t)/3 (54)

wheref and ¢ are the usual spherical angular coordindies and
Lagrangian variable spacand takeD = 3. Thus the pressure at[mo(t)atro(t)]z(hahB)/ré(t), (55
given by Eq.(8) has the formp=1/r|*.
Because of the additional nonlinearity in the Lagrangiani.e.,
variables we are not able to introduce a representation that
generalizes Eq911)—(13) and thus we examine the spheri- aLrat)aro(t)]=3r3(1), (56)

cal shell expansion and its stability separately. ) )
which gives for large

A. Spherical shell expansion ro(t)%31/2t1/3_ (57)
The unperturbed spherical shell expansion is described bm o )
ote that the kinetic energy decreasesta¥®. Equations
Xo(a@,B,1)=ro(t)(1— a?®)¥?sing, (54) and(57) can be obtained directly from Eq) and(4)
by simply assuming spherical symmetry as done in ).
Yola,B,1)=rq(t)(1— a?)Y?cosp, (470  However, the above derivation illustrates the procedure that
will be used for the stability analysis of the spherical shell
Zo(a,t)=ry(t)a. expansion.
In order to determine the time dependence of the radj(ty B. Spherical shell expansion stability

and in Sec. IVB the expansion stability, a number of geo- e jinearize Eqs(7) and(8) around the spherical solution
metrical relationships turn out to be useful. From Ey) we ro(t) given by Eq.(57) and write

obtain
r(a,B,t)=rqo(t)+ ér(a,B,t)

__ 1—a?)~Y2sing.
TeXo= oDl mat) Theng —ro(t)+ ST (e Bit) et T (@, Bi)e,

dgXo=To(t)(1—a?)?cosp, +0r (e, BH)eg. (58
d.Y0=—To()a(1l—a?)  Y2cosp, (48)  Inserting Eq.(598) into the mass equatiof7), we obtain
95Yo=—To(t)(1— a?)2sin B. 31OM= (3,81 - [ F X gl ])+ (9,60 - [l X Iy ])
+(dgor-[0rXa,r]), (59

07a20=r0(t), (9320:0.
which, using Eq(50), can be rewritten as
We see thar is parallel tory and that
gedm=hh, hglh re- g, 0r+h, e, 9,60 +hgteg ap6r],
Fal o glo=0dyl o diF g=dgl o i o=0, (49 (60)
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where the equilibrium mass variatidnh,h; has been fac- amplitudes of the radial and of the tangential displacements,
torized out. As shown in Appendix B, E¢O0) involves the  respectively. As shown in Appendix B they are related by the
divergence of the displacement vectrand can be rewrit- differential equation

ten in the form

AL Modrt 11 (D) ]1=To() 31 (D +r ()] (69

(61) Then, after expanding the perturbed mass term in spherical
harmonics,

r9t5m= (91( 5I’thah3) + (9a( 5I’ahﬁht) + (7'3( 5I’Bhtha)

From  |r(a,B,t)|?=rq(t)2+2rq(t)&- or(a,B,t)=rq(t)?
+2ro(t) 8ry(, B,t) we obtain for the pressure termr4/ )
5m(a,,8,t)=% w (DY, ((O)expispB),  (70)
4, ) ~To(t) Y[ 1—45r(a,B1)Ir(D)]. (62 |
(e.f o)1 e olt)] we find that Eqs(61) and (63) read, see Appendix B,
Then linearizing Eq(8) and recalling that, since the equilib-

rium expansion is uniform, the unit vectoes, €z, € are 191,u|,s=07t[ff2;fu|,s(t)]+[|(|+1)/2](<91f(2))ﬁ|,s(t), (71
independent of, we use Eqs(B2) and (B3) of Appendix B
to obtain

1
A Modiry (1) + w0 o] = W[' (I+2)r 41
(Mo Sr ¢+ Myt o) =1 o(t) “H{[d,(hdr ,) +d(h,or p) 0

+htord(hahp)]
—4h,hgdr Iro(t)}, (63

—2r5(H]. (72)

Note that Egs(69), (71), and (72) are independent of the
azimuthal mode numberas a consequence of the spherical
symmetry of the zero order expansion. Thus in this linear
analysis we can se&t=0 (and Jr ;=0) without loss of gen-
erality. Note in addition that fok=0 Eg.(69) decouples and
(Mod;dr o) =ro(t) " *(—hgdadri+hgdr,h tath,) (64 or,=0.

Similarly to the cylindrical case, the solutions of Egs.
and (69), (71), and(72) are of the form

where we recall tha hz=r§(t),

F(ModSF g) =To(t) (= h,dgdr+h,or ghy *athg). (65 mi(t) =t 2 ) =ttr, ()=t (79

Equationg(61), (63), (64) and(65) form our basic system Where the exponeng= y(l) is given by the solutions of the
of linearized equations. Since the zero order shell expansiofurth order polynomial
is spherically symmetric we can write the perturbations in
terms of a basis of eigenmodes with angular momentum (24+9y+9y?)%2+2I(1+1)=0. (74)
and azimuthal numbes. This decomposition into spherical
harmonics in the Lagrangian variablesand g is better per-  Stable solutions correspond to Re1/3. We find stability
formed by reverting to the variablé, such that (+ «?)Y?  for I<8 (actually, all roots have Re<O0 for |<2). The fifth
=sin@ and d,= (1/siné)d,, and by appropriately rewriting solution of Egs.(69), (71), and(72) corresponds toy=1/3
Egs.(61), (63), (64), and(65) as detailed in Appendix B. and hassr,=0 for all I, which implies that the distance from
We expanddr(a,3,t) in spherical harmonics according the origin is not changed. As in the case of the planar and of
to the cylindrical configurations, this fifth solution corresponds
to a relabeling of the Lagrangian variables. For large values
of | Eq. (74) reduces toy?= +i(v2/9)l which is again a
5rt(a,ﬂ,t)=2 M s(DY) (0)expisp), (66) modification of Ott’s resulf22]. These results show that the
ls effect of the mass accretion and of the decrease of the pres-
sure stabilizes the long wavelength Rayleigh-Taylor modes
of a spherical foil somewhat more efficiently than in the case

5ra(a,ﬁ,t>=|2 ris(DdoY, s(expisp), (67)  of acylindrical foil.

V. CONCLUSIONS

isY| «(0) . , . .
S g, B,1) =~ 2 ros(h) s exgisB), (69 In the present paper we have studied the linear stability of

s sing an infinitely thin shell expanding in an ambient plasma and
accreting all the mass it sweeps througfe snowplow ap-
where a standard notation for the spherical harmonic funcproximation under the push of the ponderomotive force of
tionsY, s has been adopted. Herg 4(t) andr | s(t) are the the electromagnetic fields trapped by the shell. We have de-
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velpped a general formalism based on the use of Lagrangian ht_let' adr=h; 1(9t5rt, (B1)

variables that applies to the expansion of shells of arbitrary

shape and have considered in particular the evolution of a . . I

planar, of a cylindrical, and of a spherical shell. h, € dar=h,"d,6r,+h "h, “érth,, (B2
The accreting mass and the decreasing pressure lead to

different expansion laws in these three different configura- 1 o1 11

tions and to different stability properties. In particular, in the hp g dpdr =hg dpdr g+hy"hg ot ,d.hg

pla_nar case the development of the Rayleigh-Taylor instabil- +hy 1h515rt8th5 ’ (B3)

ity is only slowed down by these effects but the system re-

mains unstable both at large and at small wavelengths. Ofyere we have used h,=0 and the symmetry property
the contrary, in the case of cylindrical and spherical eXpa”BB(ht,ha,hB)=0. For reference the explicit calculation of
sion long wavelength modes are stabilized while short WaVeEq (B1) is reported as

length modes, which are not physically described properly
within the thin shell model approximation, remain unstable
(with an oscillation frequency of the order of the growth & JyOr =& dy( O &+ Or ,€,+ OF gep)

rate. = .
The same formalism can be applied to the study of the 90T+ (O 0 /Ne)&- Gidal
shell expansion in a weakly inhomogeneous medium. The +(6rglhg)e - didgro
shell expands faster in the direction where the ambient den-
sity is lower. This results in the deformation of the bubble =901+ (01 o /o) (& &) dhy

and of its acceleration against the density gradient. +(8 g/hg) (e 8)dgh,.

APPENDIX A Summing Eqgs(B1)—(B3) we obtain
We separate the perturbations in Eg1) into even and
odd perturbations under the transformation given by Eg. ht‘let~at5r+h;1ea-aa5r+h!§1eﬂ-(955r
(20). Thus, for even modes the coefficients are real,w, .
=Wy e, and for odd modes they are imaginawj=iw, . =[hihshg] [ ai(drihshg)
The harmonicsk and —k are coupled and for a chosen £ 9.(80 hah)+ a8 hh
k| (=k), we obtain o TN+ I OT g ]
=div - dr, (B4)

X(a,t)=Xo+ Xy o( a,t) + 6Xy o( a,t),

(A) where we used the definition of the divergence of a vector in
curvilinear coordinates.

y(avt) =at &lk,e(a!t) + éyk,o(ait):

where the indice®,0 denote even and odd modes, respec-
tively, If we reintroduce the angled, such that (t «

=sinfandd,=(—1/sin6)d,, and substitute the explicit val-
ues of the metric elements,=r(t)/sin6, hgz=rq(t)sino,
h,=r1q(t), Eq. (61) reads

2. Expansion in spherical harmonics
2) 1/2

5Xk,e(avt) = (kae‘f‘W,k'e)COS{ka),

(A2)
. 2 :
Yk el a,t) = (Wy g —W_y o)SiN(Ka) 9 m —dy(sinfér,) dgorg
A M= 3ay(rgory) + 5 sno + sno |
and (B5)
X o @)= — (Wi o~ W_ i o)Sin(Kav), and Eqs(63)—(65) read
(A3) 1 | —=3d4(sindor,)
5yk’0(a,t)=(Wk'O+W_k]O)COS(ka). &t(moatért+5matr0): ro(t)3 sing
Translations alongr mix even and odd modes. Since the 300
equilibrium and Eqgs(12) and(13) are translationally invari- s —20r } (B6)
ant, this implies that even and odd modes are degenerate.
1
APPENDIX B 3(Myd,r ) = W(agarﬁ o), (B7)
1. Derivatives of the displacement vector
From Eqgs.(47) and(48) and the following equations we _ 1 _ Ipdry
obtain the identities I Mod¢dT ) ro(H)3\  sing +org). (B8)
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If we expand the radial displaceme#tt, in spherical har- dg(SINOST )  dpdr g
monics according to Eq66) and use Eqs(64) and (65) as sing sing
“‘inhomogeneous” equations fobr, and ér 4 to define the
expansiondr, and ér g in spherical harmonics, we obtain 1 90 . 9 s?

Egs.(67) and(68) together with the relationship between the
amplitude of the tangential and of the radial displacement
given by Eq.(69). Inserting Eqs(67) and(68) into Eqgs.(B6)

and (B7) we find that the differential operator inside the
square brackets reduces to the angular part of the Laplacian
operator, i.e., for fixed ands independently o&.

=— m (?—GSII”I 9(9—0— m Y|,S( 0)exms,8)rl|‘s(t)

=I(1+1)Y, s()explisB)r (1), (B9)
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