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Stability of a mass accreting shell expanding in a plasma
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A linearized analysis is presented of the stability of a shell which accretes mass as it expands in a plasma
under the push of the electromagnetic radiation trapped inside it. The interaction with the radiation is described
in terms of a ponderomotive force and the shell dynamics is treated within the snowplow approximation. The
mass accretion and the radiation expansion are shown to affect the stability of planar, cylindrical, and spherical
shells differently.
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I. INTRODUCTION

The expansion of plasma bubbles and cavities in an
bient plasma has been widely studied both in the labora
and in the astrophysical context with reference to differ
physical phenomena, ranging from the expansion of su
nova remnants to the evolution of relativistic electromagne
solitons. The free expansion of a spherical bubble of c
plasma and its retardation due to the effect of the exte
material can be described with the exact self-similar solut
obtained by Sedov@1# and Taylor@2#. However, this solution
implies perfect spherical symmetry and cannot be used w
the symmetry is broken. In this case the snowplow appro
mation provides a convenient tool for a qualitative and qu
titative description of the expansion as was shown more t
40 years ago. The snowplow model was developed in R
@3# in application to the theory of the plasma focus. In R
@4# it was shown how to solve the Sedov-Taylor proble
within the snowplow approximation. The bubble expans
was also considered within the framework of the snowpl
approximation in Ref.@5# in the context of the study of su
pernovae explosions. In the snowplow model@6# the ambient
matter is assumed to collide inelastically with an infinite
thin shell of plasma expanding in a medium. The sh
sweeps through space and piles up the matter it encou
on its surface, just as the blade of a snowplow collects
snow.

More detailed models of the supernovae expansion w
later developed, see, e.g., Refs.@7# and references therein
and the problem of the stability of the spherical expans
was addressed in the case of an inhomogeneous mediu
Ref. @8# and numerically in Ref.@9#, while in Ref.@10# it was
recognized that the mass accretion in the snowplow me
nism tends to suppress the development of the Rayle
Taylor instability. The acceleration of charged particles d
to the expansion of these spherical plasma shells was stu
in Ref. @11#. We recall that the acceleration of charged p
ticles at the front of shock waves provides one of the m
important acceleration mechanisms which has been u
discussion for many years~see, for example, Refs.@6# and
@12# and literature quoted therein!. In this context, the studie
of the shock wave sphericization is of great importance
the problem of cosmic ray acceleration by the curved sh
waves@13,14#.
1063-651X/2002/65~6!/066405~8!/$20.00 65 0664
-
ry
t
r-
c
d
al
n

en
i-
-
n
f.
.

n

ll
ers
e

re

n
in

a-
h-
e
ied
-
t
er

r
k

Recently it has been recognized that the physics of
interaction of ultraintense laser pulses with plasmas provi
the opportunity for simulating such cosmic events as a
pernova explosion in the laboratory@15#. In addition, in the
interaction of a laser pulse with a plasma, a phenomenon
been identified@16# that directly involves the expansion of
cavity filled with electromagnetic energy, its interaction, a
coalescence with other cavities in the plasma and the e
tual sphericization of the resulting structure. This pheno
enon is related to the long time evolution of the relativis
subcycle electromagnetic solitons@17,18# that are produced
when an ultrashort ultraintense laser pulse propagates i
underdense plasma. Interestingly, as in the cosmic case, t
small scale structures have been considered as a mecha
of particle acceleration@19#.

Relativistic subcycle solitons@17# consists of slowly or
nonpropagating electron density cavities inside which
electromagnetic field is trapped and oscillates cohere
with a frequency below the local plasma frequency and
spatial structure corresponding to half a cycle. These non
ear structures are commonly observed in one- and t
dimensional~1D and 2D! particle in cell~PIC! simulations of
the laser pulse interaction with a plasma. Recently, they h
been identified in three-dimensional~3D! PIC simulations
@18# and their long term effect on the plasma has been p
posed in Ref.@20# in order to explain the experimental de
tection with the technique of proton imaging of long live
electric field bubbles in a plasma after the interaction with
ultraintense laser pulse.

As discussed in Ref.@16#, in an electron-ion plasma sub
cycle solitons evolve on the ion dynamical time scale in
postsolitons, i.e., into slowly expanding quasineutral cavit
filled by electromagnetic radiation. This evolution is caus
by the ion acceleration due the time-averaged electros
field inside the soliton. In Ref.@16# the theory of these ex
panding quasineutral cavities was developed within
framework of the snowplow model. In this framework th
plasma cavity forms a resonator for the trapped electrom
netic field and expands under the push of its ponderomo
force exerted by the electromagnetic fields. As the cav
expands, the amplitude and the frequency of the electrom
netic field E decrease. In the adiabatic limit the rat
*E2dV/vs between the energy and the frequency rema
constant so thatE2;r 24 with r the cavity radius. Under the
action of the electromagnetic pressure the walls of the ca
©2002 The American Physical Society05-1
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move, piling up plasma as a snowplow. The mass inside
expanding plasma shell is equal to the massM
54pn0mir

3/3 initially contained inside a sphere of the r
dius r and the momentum conservation equation gives

d@M ~dr/dt!#/dt54pr 2^E2&/8p, ~1!

which yields@16# for the shell radiusr 5r (t) in dimension-
less units

d@r 3~dr/dt!#/dt5r 22. ~2!

Asymptotically for t→` the postsoliton radius increases
r;t1/3.

In Ref. @20# simulations of the two postsolitons and
multisoliton merging were performed with the aim of inte
preting the experimental detection, reported in the same
per, of electric field bubbles. In these simulations the str
tures that result from the merging evolve towards a nea
spherical shape, i.e., the initial nonspherical perturbation
cays. This implies that the expansion of spherical posts
tons is stable.

In the present paper we examine the linear stability
postsolitons analytically within the framework of the sno
plow approximation in the limit where the shell walls a
infinitely thin. We find that the bubbles are stable agains
modified form of the Rayleigh-Taylor instability up to rela
tively short wave numbers or where the shell model can
longer be expected to be valid. These short wavelen
modulations are not seen in the numerical simulations of
expanding postsolitons in Ref.@20# and are likely to be sta
bilized by the effects of the finite width of the shell n
included in the snowplow approximation.

The aim of the present paper is to provide a general tr
ment of the linear stability of a thin shell that accretes in
snowplow approximation. Therefore we examine differe
shell geometries corresponding to the expansion of a pla
of a cylindrical, and of a spherical shell. We find that t
faster decrease of the ponderomotive force and the hig
mass intake that characterize the spherical expansion lea
increased stability. As a byproduct of the present analysis
derive the time evolution of the deformation and of the m
tion of a postsoliton expanding in a weakly inhomogeneo
plasma. An interesting extension of the present work w
consist of the inclusion of a ‘‘rocket’’ term in the equation
for the mass evolution and for the momentum conserva
of the shell so as to analyze the effect on the shell stability
the bouncing back of the material that is accreted on the s
surface and the loss of mass left behind inside the expan
cavity.

II. GOVERNING EQUATIONS

We adopt the set of equations that has been used for
description of the Rayleigh-Taylor instability of a thin she
~see Ref.@21#!, modified in order to account for the increa
of the shell mass and the decrease of the push of the ele
magnetic pressure as the shell expands and sweeps the
ground plasma.
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The mass conservation equation can be written in
grangian variables as

] t~s dS u!5p~r !dS, ~3!

wherer (t) is the position of the shell element at timet. Here
the surface densitys, the surface elementdS5dS n, the
shell velocityu, and normal unit vectorn are functions of
r (t). Analogously, the momentum conservation equation
be written as

] t~sdS!5r0u•dS, ~4!

with r0 the external density~assumed constant and unifor
for the sake of simplicity! that is being accreted andp(r ) the
ponderomotive pressure that pushes the shell walls due to
trapped electromagnetic radiation. We close this system
equations by adopting the following model for the ponde
motive pressure termp(r ):

p~r !/p05~ ur0u/ur u!11D. ~5!

HereD is the dimension of the expansion process:D51 in a
planar geometry,D52 in a two-dimensional~cylindrica! ex-
pansion, andD53 in the three-dimensional~spherical! case.
Integrating Eq.~4! we obtain

s~dS/dS0!5s01r0E
t0

t

u•dS/dS0[m~ t !, ~6!

wheredS05da3db is the Lagrangian surface element,a
and b are the Lagrangian variables chosen such thatt
5t0 we haves5s0 and dS5dS0 , and m(t) is the shell
mass for unit initial surface area. For sufficiently large tim
the contribution of the initial densitys0 to the shell mass can
be neglected.

Introducing dimensionless units with the density norm
ized onr0r 0 , the velocity on (p0 /r0)1/2, lengths onr 0 , and
time on r 0(p0 /r0)21/2, Eqs.~3! and ~4! take the form

] tm5~] tr•@]ar3]br # !, ~7!

] t~m] tr !5ur u2~11D !@]ar3]br #. ~8!

III. SHELL EXPANSION IN A PLANE

In this section we first determine the steady expans
rate of a planar shell~i.e., of a shell that expands alongx and
that att50 is located at thex50 line! and of a cylindrical
shell ~i.e., of a shell that expands radially and that att50 is
located atR5R0 with R the distance from the origin in the
x-y plane! in the two-dimensionalx-y plane. Subsequently
we investigate the linear stability of this expansion. In ter
of Eq. ~5! the planar case, where the pressure decrease
uxu22, corresponds toD51 and the cylindrical case, wher
the pressure depends onR23, to D52.

Following Ref.@21# we find it convenient to introduce th
complex variable

w5x1 iy , ~9!
5-2
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so that

x5~w1w* !/2, y52 i ~w2w* !/2

and ~10!

R25ww* ,

with the asterisk denoting complex conjugate. Then Eqs.~7!
and ~8! can be written as

] tm5
i

2
~] tw]aw* 2]aw] tw* !, ~11!

] t~m] tw!52 ip~w,w* !]aw, ~12!

where

p~w,w* !5
4

~w1w* !2 and p~w,w* !5
1

~ww* !3/2

~13!

in the planar and in the cylindrical case, respectively.

A. Planar shell expansion

The steady expansion of a planar shell is obtained
defining the Lagrangian variablea as the Cartesian coord
nate along the shell att50 and by setting

w0~ t,a!5x0~ t !1 ia, i.e., y0~ t !5y0~ t50![a. ~14!

Then from Eqs.~12! and ~13!, or directly from Eqs.~7! and
~8!, we obtain

m0~ t !5x0~ t ! and ] ttx0~ t !252/x0~ t !2, ~15!

which, for t@1, gives

x0~ t !'@~2t !2 ln~ t !#1/4. ~16!

The kinetic energy of the planar shell decreases with time
(t)21/2@ ln(t)#3/4.

B. Cylindrical shell expansion

The steady expansion of a cylindrical shell is obtained
defining the Lagrangian variablea as the azimuthal angle
along the shell att50 and by setting

w0~ t,a!5R0~ t !exp~ ia!, ~17!

i.e.,

x0~ t !5R0~ t !cos~a!, y0~ t !5R0~ t !sin~a!. ~18!

Then from Eqs.~12! and ~13!, or directly from Eqs.~7! and
~8!, we obtain

m0~ t !5R0
2~ t !/2 and R0~ t !5~5t !2/5. ~19!

The kinetic energy of the cylindrical shell decreases w
time ast22/5.
06640
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C. Planar shell expansion stability

We linearize Eqs.~12! and ~13! around the slab solution
w0 given by Eq.~14!. Note that for a planar slab, Eqs.~12!
and ~13!, together with the equilibrium solutionw0 , are
translationally invariant alonga ~i.e., alongy! and are invari-
ant under the transformation

w↔w* , a↔2a ~20!

@in the case of Eq.~13! we obtain its complex conjugat
equation#. We set

w~a,t !5w01dw5w01E
2`

1`

dk wk exp~ ika! ~21!

and see that Eqs.~12! and~13! couple thek and2k harmon-
ics. Using the invariance properties of Eqs.~12! and~13! we
find ~see Appendix A! that for a chosenuku (5k), i.e., dis-
regarding the relative phase between modes with differ
uku, we can takewk andw2k to be real. Then we write

m~a,t !5m0~ t !1dmk~a,t !, ~22!

where theuku componentdmk of the mass variation can b
written in terms of its amplitudemk(t) and of the variablea
as

dmk~a,t !5mk~ t !@exp~ ika!1exp~2 ika!#

52mk~ t !cos~ka!, ~23!

while the perturbed pressure term 4/(w1w* )2 gives

4/~w1w* !2'@122 cos~ka!~wk1w2k!/x0#/x0
2. ~24!

Thus, we obtain the following coupled ordinary differenti
equations:

] tmk~ t !5kẋ0~wk2w2k!/21~ẇk1ẇ2k!/2

5~x0!2k] t@~x0!kwk#/21~x0!k] t@~x0!2kw2k#/2

~25!

and

] t~m0~ t !] twk!1] t~mk] tx0!5
kwk

x0
2 2

wk1w2k

x0
3 , ~26!

] t~m0~ t !] tw2k!1] t~mk] tx0!5
2kw2k

x0
2 2

wk1w2k

x0
3 . ~27!

For very larget such thatkx0@1, the last terms on the right
hand side~rhs! of Eqs. ~26! and ~27!, which represent the
effect of the perturbed pressure, can be neglected and~disre-
garding unimportant logarithmic terms! we can take

mk~ t !5m̂km0~ t !exp~gt1/4!,

wk~ t !5ŵkx0~ t !exp~gt1/4!, ~28!

w2k~ t !5ŵ2kx0~ t !exp~gt1/4!,
5-3



e

in

na
th
t

g

l-
e

su
r

ow

d.
a

on

ct
sure
f a

the
ed

the
the
ly

ion

m.

S. V. BULANOV AND F. PEGORARO PHYSICAL REVIEW E65 066405
whereg5g(uku) andm0(t)'xo(t)'81/4t1/2. Stability corre-
sponds to nonpositive values ofg. However, it is easy to se
that the second term on the left-hand side~lhs! of Eqs.~26!
and ~27! is smaller than the first fort@ugu21/4 so that the
mass term perturbation can be neglected. Then we obta

g256k, ~29!

as in the Ott problem@22# discussed in Ref.@21#. This result
shows that the asymptotic stability properties of a pla
shell expansion are not improved in an essential way by
mass accretion and by the decrease of the pressure term
simply result in the slowdown@see Eq.~28!# of the growth of
the Rayleigh-Taylor instability without, however, affectin
the instability conditions.

The fifth solution of the system of Eqs.~25!–~27! corre-
sponds to setting

w2k~ t !52w2k~ t !5const, i.e, dx50 ~30!

and is independent ofk. This solution has no physical re
evance and corresponds to a relabeling of the variably
5y(a) in the equilibrium solution in Eq.~14! from y5a to
y5 f (a) and the corresponding change inm0(t) to
m0(t) @d f(a)/da#.

D. Cylindrical shell expansion stability

We linearize Eqs.~12! and ~13! around the cylindrical
solutionw0 given by Eq.~17! and write

w~a,t !5w01dw

5R0~ t !exp~ ia!1SsRs~ t !exp@ i ~s11!a#, ~31!

wheredw has been expanded in a Fourier series and the
extends from2` to 1`. As in the planar case the Fourie
modess and 2s are coupled and we can takeRs(t) to be
real. We label the pairs of coupled modes by the indexs and
write

m~a,t !5m0~ t !1dms~a,t !, ~32!

where

dms~a,t !5ms~ t !@exp~ isa!1exp~2 isa!#

52ms~ t !cos~sa!, ~33!

while the perturbed pressure term (ww* )23/2 gives

~ww* !23/2'R0
2323@~Rs1R2s!/R0

3#cos~sa!. ~34!

Then, analogously to the planar case, we obtain the foll
ing coupled ordinary differential equations:

] tms5
1

2 F ] t~R0
~11s!Rs!

R0
s 1

] t~R0
~12s!R2s!

R0
2s G ~35!

and
06640
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] t@m0~ t !] tRs#1] t~ms] tR0!5
~11s!Rs

R0
3 2

3~Rs1R2s!

2R0
3 ,

~36!

] t@m0~ t !] tR2s#1] t~ms] tR0!5
~12s!R2s

R0
3 2

3~Rs1R2s!

2R0
3 .

~37!

The solutions of Eqs.~35!–~37! are of the form

ms~ t !5m̂st
g12/5, Rs~ t !5R̂st

g, R2s~ t !5R̂2st
g, ~38!

where the exponentg5g(s) is given by the roots of the
fourth-order polynomial

12s215g~6155g1150g21125g3!50. ~39!

Stable solutions correspond to Reg<2/5. We find stability
for s<6. The fifth solution of Eqs.~35!–~37! corresponds to
g52/5 and has toRs52R2s for all s which implies
d(ww* )50, i.e., the distance from the origin is not change
As in the planar solution this fifth solution corresponds to
relabeling of the azimuthal angle in the equilibrium soluti
as a function of the Lagrangian variablea. For large values
of s Eq. ~39! reduces tog256 i (2)/25)s which is a modi-
fication of Ott’s result@22#. These results show that the effe
of the mass accretion and of the decrease of the pres
stabilizes the long wavelength Rayleigh-Taylor modes o
cylindrical foil. The instabilities at short wavelengths~large
s! can be expected to be stabilized by effects related to
finite width of the expanding shell which are not account
for in the snowplow model.

E. Motion in a weakly inhomogeneous background

A perturbation approach analogous to the one used for
above stability analysis makes it possible to calculate
motion and the deformation of a cylindrical shell in a weak
inhomogeneous background.

We consider a weakly inhomogeneous 2D configurat
with an external plasma density of the form

r0~x!5r0@11e~v* w1vw* !#, ~40!

with e!1 andv a complex number such thatvv* 51. To
leading order ine we can use Eqs.~36! and ~37! with s51,
together with the mass equation~35! where the effect of the
plasma inhomogeneity takes the form of a forcing ter
Choosing the Lagrangian anglea such thatv51 ~i.e., taking
the plasma density to vary alongx! instead of Eq.~35! we
obtain

] tm15R0@2] tR11] tR21#/21eR0] tm0~ t !. ~41!

For larget the above system of equations reduces to

] tm1'eR0] tm0~ t ! ~42!

and

] t@m0~ t !] tR1#'2] t~m1] tR0!, ~43!
5-4
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] t@m0~ t !] tR2#'2] t~m1] tR0!, ~44!

which give

R1'R21}t4/5, R1,0, R21,0 ~45!

and show that the shell negative shift alongx and its defor-
mation grow together and faster than the equilibrium exp
sion.

IV. SHELL EXPANSION IN SPACE

The expansion of a three-dimensional shell and its sta
ity properties are intrinsically different from those of a sh
expanding in a plane. As explicitly discussed in Ref.@23#, the
equations of the shell expansion in space are nonlinear in
Lagrangian variablesa andb, as shown by Eqs.~7! and~8!,
while in the case of the expansion in a plane the only n
linearities arise fromm(t) andp(t).

We consider a spherical configuration with

a5cosu, b5w, ~46!

whereu andw are the usual spherical angular coordinates~in
Lagrangian variable space! and takeD53. Thus the pressure
given by Eq.~8! has the formp51/ur u4.

Because of the additional nonlinearity in the Lagrang
variables we are not able to introduce a representation
generalizes Eqs.~11!–~13! and thus we examine the sphe
cal shell expansion and its stability separately.

A. Spherical shell expansion

The unperturbed spherical shell expansion is describe

x0~a,b,t !5r 0~ t !~12a2!1/2sinb,

y0~a,b,t !5r 0~ t !~12a2!1/2cosb, ~47!

z0~a,t !5r 0~ t !a.

In order to determine the time dependence of the radiusr 0(t)
and in Sec. IV B the expansion stability, a number of ge
metrical relationships turn out to be useful. From Eq.~47! we
obtain

]ax052r 0~ t !a~12a2!21/2sinb,

]bx05r 0~ t !~12a2!1/2cosb,

]ay052r 0~ t !a~12a2!21/2cosb, ~48!

]by052r 0~ t !~12a2!1/2sinb.

]az05r 0~ t !, ]bz050.

We see that] tr0 is parallel tor0 and that

]ar0•]br05]ar0•] tr05]br0•] tr050, ~49!
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i.e., ]ar0 , ]br0 , ] tr0ir0 form an orthogonal basis in spac
and define tree unit vectorsea(a,b), eb(a,b), et(a,b) such
that

]ar05haea , ]br05hbeb , ] tr05htet , ea3eb5et ,
~50!

whereea , eb , et are independent oft, and

ht5 ṙ 0 , ha5r 0~12a2!21/2, hb5r 0~12a2!1/2 ~51!

are the metric elements defined by

dx21dy21dz25ht
2dt21ha

2da21hb
2db2. ~52!

Inserting Eqs.~47! and ~48! into Eqs.~7! and ~8! we ob-
tain

] tm0~ t !5hthahb5 ṙ 0r 0
2, ~53!

which gives for the shell mass for unit solid angle

m0~ t !5r 0
3~ t !/3 ~54!

and

] t@m0~ t !] tr 0~ t !#5~hahb!/r 0
4~ t !, ~55!

i.e.,

] t@r 0
3~ t !] tr 0~ t !#53/r 0

2~ t !, ~56!

which gives for larget

r 0~ t !'31/2t1/3. ~57!

Note that the kinetic energy decreases ast21/3. Equations
~54! and~57! can be obtained directly from Eqs.~3! and~4!
by simply assuming spherical symmetry as done in Eq.~2!.
However, the above derivation illustrates the procedure
will be used for the stability analysis of the spherical sh
expansion.

B. Spherical shell expansion stability

We linearize Eqs.~7! and~8! around the spherical solutio
r 0(t) given by Eq.~57! and write

r ~a,b,t !5r 0~ t !1dr ~a,b,t !

5r 0~ t !1dr t~a,b,t !et1dr a~a,b,t !ea

1dr b~a,b,t !eb . ~58!

Inserting Eq.~58! into the mass equation~7!, we obtain

] tdm5~] tdr•@]ar3]br # !1~]adr•@]br3] tr # !

1~]bdr•@] tr3]ar # !, ~59!

which, using Eq.~50!, can be rewritten as

] tdm5hthahb@ht
21et•] tdr1ha

21ea•]adr1hb
21eb•]bdr #,

~60!
5-5
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where the equilibrium mass variationhthahb has been fac-
torized out. As shown in Appendix B, Eq.~60! involves the
divergence of the displacement vectordr and can be rewrit-
ten in the form

] tdm5] t~dr thahb!1]a~dr ahbht!1]b~dr bhtha!.
~61!

From ur (a,b,t)u2'r 0(t)212r 0(t)et•dr (a,b,t)5r 0(t)2

12r 0(t)dr t(a,b,t) we obtain for the pressure term 1/r 4

r 24~a,b,t !'r 0~ t !24@124dr t~a,b,t !/r 0~ t !#. ~62!

Then linearizing Eq.~8! and recalling that, since the equilib
rium expansion is uniform, the unit vectorsea , eb , et are
independent oft, we use Eqs.~B2! and ~B3! of Appendix B
to obtain

] t~m0] tdr t1dm] tr 0!5r 0~ t !24$@]a~hbdr a!1]b~hadr b!

1ht
21dr t] t~hahb!#

24hahbdr t /r 0~ t !%, ~63!

where we recall thathahb5r 0
2(t),

] t~m0] tdr a!5r 0~ t !24~2hb]adr t1hbdr aht
21] tha! ~64!

and

] t~m0] tdr b!5r 0~ t !24~2ha]bdr t1hadr bht
21] thb!. ~65!

Equations~61!, ~63!, ~64! and~65! form our basic system
of linearized equations. Since the zero order shell expan
is spherically symmetric we can write the perturbations
terms of a basis of eigenmodes with angular momentul
and azimuthal numbers. This decomposition into spherica
harmonics in the Lagrangian variablesa andb is better per-
formed by reverting to the variableu, such that (12a2)1/2

5sinu and ]a5(1/sinu)]u , and by appropriately rewriting
Eqs.~61!, ~63!, ~64!, and~65! as detailed in Appendix B.

We expanddr (a,b,t) in spherical harmonics accordin
to

dr t~a,b,t !5(
l ,s

r i l ,s~ t !Yl ,s~u!exp~ isb!, ~66!

dr a~a,b,t !5(
l ,s

r' l ,s~ t !]0Yl ,s~u!exp~ isb!, ~67!

dr b~a,b,t !52(
l ,s

r' l ,s~ t !
isYl ,s~u!

sinu
exp~ isb!, ~68!

where a standard notation for the spherical harmonic fu
tionsYl ,s has been adopted. Herer i l ,s(t) andr' l ,s(t) are the
06640
on

c-

amplitudes of the radial and of the tangential displaceme
respectively. As shown in Appendix B they are related by
differential equation

] t@m0] tr' l ,s~ t !#5r 0~ t !23@r' l ,s~ t !1r i l ,s~ t !#. ~69!

Then, after expanding the perturbed mass term in sphe
harmonics,

dm~a,b,t !5(
l ,s

m l ,s~ t !Yl ,s~u!exp~ isb!, ~70!

we find that Eqs.~61! and ~63! read, see Appendix B,

] tm l ,s5] t@r 0
2r i l ,s~ t !#1@ l ~ l 11!/2#~] tr 0

2!r' l ,s~ t !, ~71!

] t@m0] tr i l ,s~ t !1m l ,s] tr 0#5
1

r 0~ t !3 @ l ~ l 11!r' l ,s~ t !

22r i l ,s~ t !#. ~72!

Note that Eqs.~69!, ~71!, and ~72! are independent of the
azimuthal mode numbers as a consequence of the spheric
symmetry of the zero order expansion. Thus in this line
analysis we can sets50 ~anddr b50! without loss of gen-
erality. Note in addition that forl 50 Eq.~69! decouples and
dr a[0.

Similarly to the cylindrical case, the solutions of Eq
~69!, ~71!, and~72! are of the form

m l~ t !5m̂ l t
g12/3, r i l~ t !5 r̂ i l t

g, r' l~ t !5 r̂' l t
g, ~73!

where the exponentg5g( l ) is given by the solutions of the
fourth order polynomial

~219g19g2!212l ~ l 11!50. ~74!

Stable solutions correspond to Reg<1/3. We find stability
for l<8 ~actually, all roots have Reg,0 for l<2!. The fifth
solution of Eqs.~69!, ~71!, and ~72! corresponds tog51/3
and hasdr t50 for all l, which implies that the distance from
the origin is not changed. As in the case of the planar and
the cylindrical configurations, this fifth solution correspon
to a relabeling of the Lagrangian variables. For large val
of l Eq. ~74! reduces tog256 i (&/9)l which is again a
modification of Ott’s result@22#. These results show that th
effect of the mass accretion and of the decrease of the p
sure stabilizes the long wavelength Rayleigh-Taylor mo
of a spherical foil somewhat more efficiently than in the ca
of a cylindrical foil.

V. CONCLUSIONS

In the present paper we have studied the linear stability
an infinitely thin shell expanding in an ambient plasma a
accreting all the mass it sweeps through~the snowplow ap-
proximation! under the push of the ponderomotive force
the electromagnetic fields trapped by the shell. We have
5-6
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veloped a general formalism based on the use of Lagran
variables that applies to the expansion of shells of arbitr
shape and have considered in particular the evolution o
planar, of a cylindrical, and of a spherical shell.

The accreting mass and the decreasing pressure lea
different expansion laws in these three different configu
tions and to different stability properties. In particular, in t
planar case the development of the Rayleigh-Taylor insta
ity is only slowed down by these effects but the system
mains unstable both at large and at small wavelengths.
the contrary, in the case of cylindrical and spherical exp
sion long wavelength modes are stabilized while short wa
length modes, which are not physically described prope
within the thin shell model approximation, remain unstab
~with an oscillation frequency of the order of the grow
rate!.

The same formalism can be applied to the study of
shell expansion in a weakly inhomogeneous medium. T
shell expands faster in the direction where the ambient d
sity is lower. This results in the deformation of the bubb
and of its acceleration against the density gradient.

APPENDIX A

We separate the perturbations in Eq.~21! into even and
odd perturbations under the transformation given by
~20!. Thus, for even modes the coefficientswk are real,wk
5wk,e , and for odd modes they are imaginary,wk5 iwk,o .
The harmonicsk and 2k are coupled and for a chose
uku (5k), we obtain

x~a,t !5x01dxk,e~a,t !1dxk,o~a,t !,
~A1!

y~a,t !5a1dyk,e~a,t !1dyk,o~a,t !,

where the indicese,o denote even and odd modes, resp
tively,

dxk,e~a,t !5~wk,e1w2k,e!cos~ka!,
~A2!

dyk,e~a,t !5~wk,e2w2k,e!sin~ka!

and

dxa,o~a,t !52~wk,o2w2k,o!sin~ka!,
~A3!

dyk,o~a,t !5~wk,o1w2k,o!cos~ka!.

Translations alonga mix even and odd modes. Since th
equilibrium and Eqs.~12! and~13! are translationally invari-
ant, this implies that even and odd modes are degenera

APPENDIX B

1. Derivatives of the displacement vector

From Eqs.~47! and ~48! and the following equations we
obtain the identities
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ht
21et•] tdr5ht

21] tdr t , ~B1!

ha
21ea•]adr5ha

21]adr a1ht
21ha

21dr t] tha , ~B2!

hb
21eb•]bdr5hb

21]bdr b1ha
21hb

21dr a]ahb

1ht
21hb

21dr t] thb , ~B3!

where we have used]aht50 and the symmetry propert
]b(ht ,ha ,hb)50. For reference the explicit calculation o
Eq. ~B1! is reported as

et•] tdr5et•] t~dr tet1dr aea1dr beb!

5] tdr t1~dr a /ha!et•] t]ar0

1~dr b /hb!et•] t]br0

5] tdr t1~dr a /ha!~et•et!]aht

1~dr b /hb!~et•et!]bht .

Summing Eqs.~B1!–~B3! we obtain

ht
21et•] tdr1ha

21ea•]adr1hb
21eb•]bdr

5@hthahb#21@] t~dr thahb!

1]a~dr ahbht!1]b~dr bhtha!#

[div •dr , ~B4!

where we used the definition of the divergence of a vecto
curvilinear coordinates.

2. Expansion in spherical harmonics

If we reintroduce the angleu, such that (12a2)1/2

5sinu and]a5(21/sinu)]u , and substitute the explicit val
ues of the metric elementsha5r 0(t)/sinu, hb5r 0(t)sinu,
ht5 ṙ 0(t), Eq. ~61! reads

] tdm5] t~r 0
2dr t!1S ] tr 0

2

2 D F2]u~sinudr a!

sinu
1

]bdr b

sinu G ,
~B5!

and Eqs.~63!–~65! read

] t~m0] tdr t1dm] tr 0!5
1

r 0~ t !3 F2]u~sinudr a!

sinu

1
]bdr b

sinu
22dr tG , ~B6!

] t~m0] tdr a!5
1

r 0~ t !3 ~]udr t1dr a!, ~B7!

] t~m0] tdr b!5
1

r 0~ t !3 S 2
]bdr t

sinu
1dr bD . ~B8!
5-7
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If we expand the radial displacementdr t in spherical har-
monics according to Eq.~66! and use Eqs.~64! and ~65! as
‘‘inhomogeneous’’ equations fordr a and dr b to define the
expansiondr a and dr b in spherical harmonics, we obtai
Eqs.~67! and~68! together with the relationship between th
amplitude of the tangential and of the radial displacem
given by Eq.~69!. Inserting Eqs.~67! and~68! into Eqs.~B6!
and ~B7! we find that the differential operator inside th
square brackets reduces to the angular part of the Lapla
operator, i.e., for fixedl ands
-

s.

s

l,

So

i-

.
A.

06640
t

ian

2
]u~sinudr a!

sinu
1

]bdr b

sinu

52F 1

sinu

]

]u
sinu

]

]u
2

s2

sin2 uGYl ,s~u!exp~ isb!r' l ,s~ t !

5 l ~ l 11!Yl ,s~u!exp~ isb!r' l ,s~ t !, ~B9!

independently ofs.
t.

.
y,

ri-
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